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Abstract
Commuting periodic operators (CPO) depending on the coordinate x̂ and the
momentum p̂ operators are defined. The CPO are functions of the two basic
commuting operators exp

(
ix̂ 2π

a

)
and exp

(
i
h̄
p̂a

)
, with a being an arbitrary

constant. A periodic Wigner function (PWF) w(x, p) is defined and it is shown
that it is applicable in a normal expectation value calculation to the CPO, as done
in the original Wigner paper. Moreover, this PWF is non-negative everywhere,
and it can therefore be interpreted as an actual probability distribution. The
PWF w(x, p) is shown to be given as an expectation value of the periodic Dirac
delta function in the phase plane.

PACS numbers: 03.65.Ta, 03.65.Sq, 03.65.Ca

1. Introduction

The Wigner function was originally introduced in the early stages of quantum mechanics
[1] and has since become of much use both in physics [2] and signal analysis [3]. As is
well known, the Wigner function is real, but not everywhere positive, and it might actually
take negative values. For this reason it cannot be interpreted as the simultaneous probability
distribution for the coordinate x and the momentum p. As was shown in the original paper [1],
for a sum of operators g(x̂) and f (p̂), the following important relation holds:∫ ∞

−∞

∫ ∞

−∞
dx dp[f (p) + g(x)]W(x, p) =

∫ ∞

−∞
ψ∗(x)

[
f

(
−ih̄

∂

∂x

)
+ g(x̂)

]
ψ(x) dx, (1)

where W(x, p) is the Wigner function

W(x, p) = 1

h

∫ ∞

−∞
exp

(
− i

h̄
pz

)
ψ∗

(
x − 1

2
z

)
ψ

(
x +

1

2
z

)
dz (2)

and ψ(x) is the wavefunction of the quantum state. What equation (1) tells us is that for
calculating the expectation value of a sum of operators f (p̂) + g(x̂), which is given by the
right-hand side of equation (1) in quantum mechanics, one can also use the Wigner function
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in a normal probability calculation (in what follows this will mean that the Wigner function is
used as if it were a classical distribution function) as given by the left-hand side of equation (1).
Attention is drawn to the fact that f (p̂) is a function of the momentum only, and similarly, g(x̂)

depends only on the coordinate. Wigner’s result in equation (1) was generalized by Moyal
[4], to include any function Â(x̂, p̂) of the operators x̂ and p̂. But then for calculating the
expectation value of the operator Â(x̂, p̂) one cannot use the normal probability calculation,
as suggested by Wigner, and one has to use in equation (1) the classical function ACL(xp)

which is obtained from the operator Â(x̂, p̂) according to what is called Weyl’s rule [4, 5].
However, in quantum mechanics one encounters operators which are functions, not directly
of x̂ and p̂, but of the following two basic commuting operators:

exp

(
i
2π

a
x̂

)
, exp

(
i

h̄
p̂a

)
(3)

where a is an arbitrary constant. Functions of these operators appear in a great variety of
problems in physics and signal processing. Examples are the Bloch theory of solids [6], the
von Neumann discrete coherent states [7], the magnetic translations [8], the kq-representation
[9], the quantum Hall effect [10] and different examples in signal processing [11, 12].

2. Periodic Wigner function

In this letter, we construct commuting periodic operators (CPO) based on the operators in
equation (3). We show that the Wigner function is, in general, not applicable for calculating
expectation values of products of the operators in equation (3) in a normal expectation value
calculation, meaning that for them the formula in equation (1) is not applicable. We prove,
however, that a previously published function [12, 13] can be defined as a periodic Wigner
function (PWF), w(x, p), and that by using w(x, p) one may write the formula in equation (1)
for any products of the commuting periodic operators of equation (3), meaning that w(x, p)

can be used for the latter operators in a normal expectation value calculation. This PWF
w(x, p) is moreover non-negative and can therefore be interpreted as an actual probability
distribution for CPO.

We start with the definition of commuting periodic operators P̂ (x̂, p̂) based on the
operators in equation (3) (they are periodic in p̂ with the period h

a
, and in x̂ with period a):

P̂ (x̂, p̂) =
∑
m,n

P (m, n) exp

(
i

h̄
p̂am

)
exp

(
ix̂

2π

a
n

)
, (4)

where a is an arbitrary constant, P(m, n) are expansion coefficients and the integers m and n
can assume any number of values. We would like to point out that the order of the operators
in equation (4) is not important because they commute. An important physical example of
operators in equation (4) is the problem of a Bloch electron in a magnetic field [8, 10, 14]. By
denoting the expectation value of an operator Ô by 〈Ô〉, we have the following expression for
the expectation value of P̂ (x̂, p̂) of equation (4) in the state ψ(x) (according to the rules of
quantum mechanics):

〈P̂ (x̂, p̂)〉 =
∫ ∞

−∞
ψ∗(x)P̂

(
x,−ih̄

∂

∂x

)
ψ(x) dx. (5)

On the other hand, if one assumed that the Wigner function can be used for calculating the
expectation value of P̂ (x̂, p̂), as in equation (1), the result would be different. In order to see
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this we calculate the following integral:∫ ∞

−∞

∫ ∞

−∞
dx dp exp

(
i

h̄
pam

)
exp

(
ix

2π

a
n

)
W(x, p)

= (−1)mn

〈
exp

(
i

h̄
p̂am

)
exp

(
ix̂

2π

a
n

)〉
, (6)

where on the right-hand side the brackets 〈 〉 denote the quantum mechanical expectation
value as in equation (5), and on the left-hand side is the normal expectation value calculation,
assuming that the Wigner function W(x, p) is suitable for this purpose. Equation (6) shows
that for the periodic operator in equation (4), the following result holds:

〈P̂ (x̂, p̂)〉 =
∑
m,n

P (m, n)(−1)mn

〈
exp

(
i

h̄
pam

)
exp

(
ix

2π

a
m

)〉
W

, (7)

where by the brackets 〈 〉W we have denoted the left-hand side of equation (6). Equation (7)
shows that the Wigner function is not suitable for a normal expectation value calculation of
CPO P̂ (x̂, p̂), as defined in equation (4).

We now show how to define a Wigner function which is suitable for calculating
expectation values of CPO in the normal expectation value calculation. For this we use the
kq-representation [9]. In the latter the expectation value of P̂ (x̂, p̂) in equation (4) is (since
in the kq-representation P(x, p) is a multiplication operator)

〈P(x, p)〉 = 1

h̄

∫ a

0

∫ h
a

0
P(x, p)

∣∣∣∣C
(

p

h̄
, x

)∣∣∣∣
2

dx dp, (8)

where C(k, q)
(
k = p

h̄

)
is the kq-transform of the wavefunction ψ(x) in equation (1). In

[12, 13] the following relation was proven:

1

2

∑
m,n

(−1)mnW

(
x + n

a

2
, p + m

h

2a

)
= 1

h̄

∣∣∣∣C
(

p

h̄
, x

)∣∣∣∣
2

. (9)

Following this relation we introduce the little w(x, p),

w(x, p) = 1

2

∑
m,n

(−1)mnW

(
x + n

a

2
, p + m

h

2a

)
(10)

and we call it, by definition, the periodic Wigner function (PWF) for CPO. From equations (8),
(9) and (10) it follows that for any operator defined in equation (4) we can use the PWF w(x, p)

in the normal probability calculation

〈P(x, p)〉 =
∫ a

0

∫ h
a

0
dx dpP (x, p)w(x, p). (11)

Moreover, being equal to the square of the absolute value, 1
h̄

∣∣C(
p

h̄
, x

)∣∣2
(equations (9) and

(10)), of the kq-transform, the periodic Wigner function w(x, p) is non-negative everywhere
for x and p. It is easy to check that w(x, p) is periodic in x and p with the periods a and h

a
,

respectively,

w

(
x + a, p +

h

a

)
= w(x, p). (12)

Also, w(x, p) satisfies the probability requirement∫ a

0

∫ h̄ 2π
a

0
w(x, p) dx dp = 1. (13)
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We see therefore that the periodic Wigner function w(x, p) is a bona fide distribution function
for commuting periodic operators.

Having defined the PWF for CPO in equation (10), it is of interest to consider other
distribution functions in this context. A general scheme for constructing distribution functions
D(x, p) was considered by Cohen [15]. All his D(x, p)-functions satisfy the Wigner
equation (1) for the sum of operators f (p̂) and g(x). One can, however, check that a
special example of a distribution function that satisfies equation (1) for CPO is the Rihaczek
function. The latter was first introduced in signal analysis [16]

R(x, p) = 1√
h

ψ(x)F ∗(p) exp

(
− i

h̄
xp

)
, (14)

where F(p) is the Fourier transform of ψ(x). In addition to its very interesting property of
being applicable in the calculation of expectation values for CPO in the normal probability
calculation (a property not possessed by the Wigner function, see equation (7)), the Rihaczek
function satisfies also another important relation, which is connected to the kq-transform
C(k, q) of ψ(x). |C(k, q)|2 has the meaning of the probability of measuring p

h̄
and x modulo

2π
a

and a, respectively. Assuming that the functions D(x, p) in the general Cohen scheme
[15] can be given the meaning of a distribution function, the following relation should hold:

∑
m,n

D

(
x + na, p + m

h

a

)
= 1

h̄

∣∣∣∣C
(

p

h̄
, x

)∣∣∣∣
2

. (15)

This relation was called in [13] the quantum postulate on phase space distribution functions. It
was proven in [13] that the Rihaczek function R(x, p) satisfies relation (15), while the Wigner
function does not. The latter unexpectedly satisfies relation (9). By comparing equations (9),
(10) and (15), we can write

w(x, p) = 1

2

∑
m,n

(−1)mnW

(
x + n

a

2
, p + m

h

2a

)

=
∑
m,n

R

(
x + na, p + m

h

a

)
= 1

h̄

∣∣∣∣C
(

p

h̄
, x

)∣∣∣∣
2

. (16)

This equation gives three different expressions for the PWF. In addition, equations (15) and
(16) show that the Rihaczek distribution satisfies the quantum postulate, as formulated in [13].
In this context, it is interesting to point out that, despite the Rihaczek function being complex,
the sum of it in equation (16) is real and non-negative.

As was pointed out in the introduction, in order to be able to use Wigner’s function in
the calculation of expectation values, for an arbitrary operator Â(x̂, p̂), one has to put into
correspondence to this operator Â(x̂, p̂) a classical function ACL(x, p) according to Weyl’s
rule [4, 5, 17]: given an operator Â(x̂, p̂), one writes its integral representation

Â(x̂, p̂) = 1√
h

∫ ∞

−∞

∫ ∞

−∞
a(α, β) exp

[
i

h̄
(αx̂ + βp̂)

]
dα dβ. (17)

The classical function ACL(x, p) corresponding to Â(x̂, p̂) is then given by

ACL(x, p) = 1√
h

∫ ∞

−∞

∫ ∞

−∞
a(α, β) exp

[
i

h̄
(αx + βp)

]
dα dβ. (18)

By using equations (17) and (18) it is simple to calculate the classical function[
exp

(
i
h̄
p̂am

)
exp

(
ix̂ 2π

a
n
)]

CL
that corresponds to the quantum operator exp

(
i
h̄
p̂am

)
exp

(
ix̂ 2π

a
n
)

in equation (6). We have
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exp

(
i

h̄
p̂am

)
exp

(
ix̂

2π

a
n

)]
CL

= (−1)mn exp

(
i

h̄
pam

)
exp

(
ix

2π

a
n

)
. (19)

This equation is in full agreement with the result in equation (6), showing that∫ ∞

−∞

∫ ∞

−∞
dx dp

[
exp

(
i

h̄
p̂am

)
exp

(
ix̂

2π

a
n

)]
CL

W(x, p)

=
〈
exp

(
i

h̄
p̂am

)
exp

(
ix̂

2π

a
n

)〉
. (20)

The appearance of the factor (−1)mn in equations (6) and (19) is now easy to understand. The
basic operators in equations (3), (6) and (19) have a very interesting feature

exp

(
i

h̄
p̂am

)
exp

(
ix̂

2π

a

)
= exp

(
ix̂

2π

a
n

)
exp

(
i

h̄
p̂am

)

= (−1)mn exp

(
i

h̄
p̂am + ix̂

2π

a
n

)
. (21)

Equation (21) shows that the basic operators in equations (3), (6) and (20) commute, but when
adding the exponents the factor (−1)mn appears. This therefore explains the appearance of
this factor in equations (6) and (19). There is a sharp distinction between the basic operators
in equation (21) for mn = even and the mn = odd. In the first case, for calculating their
expectation values, one can use the Wigner function in the normal probability calculation. On
the other hand, in the second case, the normal probability calculation by using the Wigner
function will give the opposite sign (see equation (6)) to that of the actual result.

3. Examples

We now consider a few examples of using the PWF w(x, p) for calculating expectation values
of the periodic operators in equation (21). The first example is for the barrier wavefunction
[19]

ψ(x) =
{

1√
a
, |x| < a

2

0, |x| > a
2 ,

(22)

where a is an arbitrary constant. The C(k, q)-function for this ψ(x) is [9]

C(k, q) = 1√
2π

, for |q| � a

2
and any k. (23)

From equations (9) and (10) it follows that w(x, p) = 1
h

, and therefore for the operators in
equation (21) we have〈

exp

(
i

h̄
p̂am

)
exp

(
ix̂

2π

a
n

)〉
= δm0δn0. (24)

In this case the expectation values of x̂ and p̂ are zero.
For the second example we take the coherent state ψα(x). For it |Cα(k, q)|2 is [19]∣∣∣∣Cα

(
p

h̄
, q

)∣∣∣∣
2

= 1

2π

∑
m,n

(−1)mn exp

[
− a2

4λ2
m2 − π2λ2

a2
n2 + i

2π

a
(q − x̄)n− ia

(
k − p̄

h̄

)
m

]
,

(25)

where λ is the width of the Gaussian in the coherent state and

α = 1

λ
√

2

(
x̄ +

i

h̄
p̄λ2

)
, (26)
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x̄ and p̄ being the expectation values of x̂ and p̂ in the coherent state. The PWF w(x, p) is
(see equations (9), (10) and (25))

wα(x, p) = 1

h̄

∣∣∣∣Cα

(
p

h̄
, x

)∣∣∣∣
2

. (27)

For the expectation values of the operators in equation (21) we have therefore

〈α| exp

(
i

h̄
p̂as

)
exp

(
ix̂

2π

a
t

)
|α〉 = (−1)st exp

(
−a2s2

4λ2
− π2λ2

a2
t2 +

i

h̄
p̄as + ix̄

2π

a
t

)
.

(28)

As was already pointed out, we have here the sign changing result, depending on the product
st = even, or odd. What is interesting about the result in equation (28) is that, while 〈x̂〉 = x̄

and 〈p̂〉 = p̄, in the coherent state ψα(x), the exponentiated operators have a Gaussian decay.
Finally, we discuss the harmonic oscillator states ψN(x). For these states we have for the

function CN(k, q) in the kq-representation [20]

|CN(k, q)|2 = 1

2π

∑
m,n

(−1)mn exp

(
− a2

4λ2
m2 − π2λ2

a2
n2 + i

2π

a
qn − iakm

)

×LN

(
a2

2λ2
m2 +

2π2λ2

a2
n2

)
, (29)

where LN(x) is the Laguerre polynomial [21]. Like before, for the coherent states, we find
for the harmonic oscillator states

〈N | exp

(
i

h̄
p̂as

)
exp

(
ix̂

2π

a
t

)
|N〉 = (−1)st exp

(
−a2s2

4λ2
− π2λ2

a2
t2

)

×LN

(
a2

2λ2
s2 +

2π2λ2

a2
t2

)
. (30)

For N = 0, this result coincides with that in equation (28) for x̄ = p̄ = 0.
The appearance of the phase factor (−1)mn throughout the letter is of central importance in

dealing with commuting periodic operators (CPO). As was stated before, the periodic Wigner
function, as defined in equations (9) and (10), is applicable to the calculation of expectation
values of CPO in a normal probability calculation. We draw attention to the definition of CPO
in equation (4). Here the operators exp

(
i
h̄
p̂am

)
and exp

(
ix̂ 2π

a
n
)

appear in a product form.
Their order does not matter, because they commute.

Having worked out a few examples of using the PWF w(x, p), let us now connect its
definition to the definition of the Wigner function via the expectation value of the phase plane
inversion operator. This connection puts w(x, p), as we will see, into a fundamental operator
frame. As was shown by Grossmann [17] and Roger [22], the Wigner function W(x, p) can
be defined by means of reflections �̂(x, p) about x and p in the phase plane

W(x, p) = 2

h
〈ψ |�̂(x, p)|ψ〉, (31)

where �̂(x, p) is the reflection operator about the point (x, p), and |ψ〉 is the state for which
the Wigner function is defined. In equation (31) the inversion operator �̂(x, p) is [17, 22]

�̂(x, p) = 1

2h

∫ ∞

−∞

∫ ∞

−∞
dα dβ exp

{
i

h̄
[α(x̂ − x) + β(p̂ − p)]

}
. (32)



Letter to the Editor L623

Using the definition of the periodic Wigner function w(x, p) in equation (10), and the
equations (31) and (32) we have

w(x, p) = 1

h
〈ψ |

∑
m,n

(−1)mn�̂

(
x + n

a

2
, p + m

h

2a

)
|ψ〉. (33)

After some elementary calculation, and by using the well-known formula [23]

∑
s

exp[iαs] =
∑

s

δ

(
α

2π
− s

)
≡ 	

(
α

2π

)
(34)

(	( α
2π

) is a notation for the infinite sum preceding it) we find the following result for the sum
of the operators in equation (33)

∑
m,n

(−1)mn�̂

(
x + n

a

2
, p + mh̄

π

a

)
=

∑
m,n

exp

[
i
2π

a
m(x̂ − x)

]
exp

[
i

h̄
an(p̂ − p)

]

= h	(x̂ − x)	(p̂ − p). (35)

Here we have used the notation in equation (34) for the infinite sum of the Dirac delta functions.
Finally, for the periodic Wigner function w(x, p) in equation (33), we have a very simple and
elegant result

w(x, p) = 1

h
〈ψ |

∑
m,n

exp

[
i
2π

a
m(x̂ − x)

]
exp

[
i

h̄
an(p̂ − p)

]
|ψ〉

= 〈ψ |	(x̂ − x)	(p̂ − p)|ψ〉. (36)

Being given by the expectation value of the operator 	(x̂ − x)	(p̂ − p) in the state ψ(x),
equation (36) puts the periodic Wigner function into an operator frame.

The expression for the PWF in equation (36) can directly be extended to include what
is called the cross Wigner function [3]. Given two states ψ(x) and ϕ(x), the cross periodic
Wigner function wψ,φ is

wψ,ϕ(x, p) = 〈ψ |	(x̂ − x)	(p̂ − p)|ϕ〉. (37)

Respectively, for any of the commuting periodic operators in equation (21), we have

〈ψ | exp

(
i

h̄
p̂am

)
exp

(
ix̂

2π

a
n

)
|ϕ〉

=
∫ a

0

∫ h
a

0
wψ,ϕ(x, p) exp

(
i

h̄
pam

)
exp

(
ix

2π

a
n

)
dx dp. (38)

It follows that any quantum mechanical calculation, and not only expectation values, can
therefore be calculated for commuting periodic operators by means of the periodic Wigner
function w(x, p) and its extension wψ,ϕ(x, p).

As an example, the calculation in equations (29) and (30) can be extended to include
non-diagonal matrix elements between the harmonic oscillator states |M〉 and |N〉. We have
for the cross periodic Wigner function (equations (27), (37))

wN,M(x, p) = 1

h̄
C∗

N

(
p

h̄
, x

)
CM

(
p

h̄
, x

)
. (39)
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Correspondingly, extending the matrix element in equation (30) for two different states, we
find for M � N [24, 25]

〈N | exp

(
i

h̄
p̂as

)
exp

(
ix̂

2π

a
t

)
|M〉

=
∫ a

0

∫ h
a

0
wN,M(x, p) exp

(
i

h̄
pas

)
exp

(
ix

2π

a
t

)
dx dp

= (−1)st

√
N !

M!
exp

(
−a2s2

4λ2
− π2λ2t2

a2

)[
1

λ
√

2

(
sa + i

2π

a
λ2t

)]M−N

×LM−N
N

(
a2s2

2λ2
+

2π2λ2t2

a2

)
, (40)

where LM−N
N (x) is a Laguerre polynomial [21]. For M = N equation (40) goes over into

equation (30).

4. Conclusion

In conclusion, we have defined a periodic Wigner function w(x, p) (PWF) which is shown to
be a bona fide distribution function for commuting periodic operators. This PWF can be used
in a normal probability calculation, as was done in the original Wigner paper [1]. The periodic
Wigner function was extended to a cross PWF, and this leads to a general scheme enabling
one to perform any quantum mechanical calculation for periodic commuting operators.
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